
Understanding Gradient Descent

Muskula Rahul

Introduction to Gradient Descent

Gradient Descent is a cornerstone optimization algorithm used extensively in machine learning and deep
learning for minimizing functions and efficiently training models. It achieves this by iteratively adjusting
parameters in the direction that reduces a cost function, effectively navigating the function’s landscape to
find its minima. This article explains the workings of gradient descent, distinguishes between local and global
minima, addresses its shortcomings, and explores advanced variants designed to tackle these limitations.

Working of Gradient Descent

Gradient Descent minimizes a function f(x) by iteratively updating the parameter x using the following
formula:

xt+1 = xt − η∇f(xt)

where:

• xt: Current position of the parameter at iteration t.

• η: Learning rate (step size).

• ∇f(xt): Gradient of the function at xt.

The negative gradient (−∇f(xt)) indicates the direction of steepest descent, while the learning rate
controls the magnitude of each step.

Example Function

Consider the function:

f(x) = 0.1x3 − 2 sin(x) + 0.5x2 − 1

The visualization demonstrates the iterative approach of gradient descent toward a local minimum.
Starting at an initial point (e.g., x = 4), the algorithm adjusts x step-by-step, ultimately converging towards
a minimum.

Local vs. Global Minima

Local Minimum

A local minimum is a point where the function’s value is lower than that of its immediate neighbors, but
not necessarily the lowest point across the entire function domain.

Global Minimum

A global minimum represents the absolute lowest point of the function across its entire domain.

neuralnets.dev Muskula Rahul

Figure 1: Gradient Descent Visualization. The initial position is marked with a green circle, the final position
with a red star. The color of the points represents the iteration number (shown in the colorbar).

Shortcomings of Gradient Descent

1. Local Minima and Saddle Points: Gradient descent can become trapped in local minima or saddle
points (flat regions where the gradient is near zero).

2. Learning Rate Sensitivity: A small learning rate leads to slow convergence, while a large one risks
overshooting or divergence.

3. Non-Convex Functions: For complex, non-convex functions, the algorithm doesn’t guarantee finding
the global minimum.

4. Gradient Vanishing/Exploding: Gradients can become excessively small (vanish) or large (ex-
plode), particularly in deep learning.

Advanced Variants of Gradient Descent

Stochastic Gradient Descent (SGD)

Unlike standard gradient descent, which calculates the gradient using the entire dataset, Stochastic Gra-
dient Descent (SGD) updates parameters using a single randomly chosen data point per iteration. This
makes it computationally efficient for large datasets.

Update Rule

θt+1 = θt − η∇θJ(θ;xi, yi)

Where:

• θt: Current parameters at iteration t.

https://neuralnets.dev

neuralnets.dev Muskula Rahul

• η: Learning rate.

• ∇θJ(θ;xi, yi): Gradient for a single data point (xi, yi).

Advantages

• Faster updates for large datasets.

• Noise introduced by random sampling can help escape local minima.

Limitations

• Noisy convergence can lead to instability.

• May not converge to the exact minimum.

Mini-Batch Gradient Descent

Mini-Batch Gradient Descent combines standard gradient descent and SGD by using a small subset
(mini-batch) of data points for each update.

Update Rule

θt+1 = θt − η
1

|B|
∑
i∈B

∇θJ(θ;xi, yi)

Where:

• B: Mini-batch of size |B|.

• Other terms are as defined in SGD.

Advantages

• Balances speed and convergence stability.

• Reduces memory usage compared to full-batch gradient descent.

Momentum

Momentum adds a fraction of the previous parameter update to the current update, which accelerates
convergence and helps escape local minima.

Update Rules

vt = βvt−1 + (1− β)∇θJ(θ)

θt+1 = θt − ηvt

Where:

• vt: Velocity (cumulative moving average of gradients).

• β: Momentum coefficient (0.8 ≤ β ≤ 0.99).

Advantages

• Accelerates convergence, especially in ravines.

• Helps bypass local minima or saddle points.

https://neuralnets.dev

neuralnets.dev Muskula Rahul

RMSprop (Root Mean Square Propagation)

Description

RMSprop adjusts the learning rate dynamically by maintaining a moving average of squared gradients.

Update Rules

E[g2]t = βE[g2]t−1 + (1− β)g2t

θt+1 = θt −
η√

E[g2]t + ϵ
gt

Where:

• E[g2]t: Exponential moving average of squared gradients.

• gt: Gradient at step t.

• ϵ: Small constant (e.g., 10−8) to prevent division by zero.

• β: Smoothing constant (e.g., 0.9).

Advantages

• Adapts learning rate per parameter.

• Suitable for non-stationary objectives.

Adam (Adaptive Moment Estimation)

Description

Adam combines the benefits of Momentum and RMSprop by maintaining moving averages of both gradients
and their squared values.

Update Rules

1. Compute biased moment estimates:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

2. Correct bias:
m̂t =

mt

1− βt
1

, v̂t =
vt

1− βt
2

3. Update parameters:

θt+1 = θt −
ηm̂t√
v̂t + ϵ

Where:

• mt, vt: Biased first and second moment estimates.

• β1, β2: Exponential decay rates (0.9 and 0.999).

• ϵ: Small constant (10−8).

https://neuralnets.dev

neuralnets.dev Muskula Rahul

Advantages

• Combines the strengths of Momentum and RMSprop.

• Effective for sparse gradients.

• A robust default choice for deep learning tasks.

Cautionary Notes

1. Local vs. Global Minima: No guarantee of finding the global minimum for non-convex functions.

2. Learning Rate Tuning: Experimentation is crucial. Consider learning rate schedules.

3. Feature Scaling: Normalize/standardize input features.

4. Visualization: Essential for understanding convergence behavior.

Conclusion

Gradient Descent is a vital tool in optimization. While it has limitations, advanced variants like Adam and
RMSprop address many of these challenges. Careful hyperparameter tuning and understanding the trade-offs
between local and global minima are key to effective application. Visualization provides invaluable insights.

https://neuralnets.dev

